
Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 1

Written by Billy D. Spelchan for www.BlazingGames.com
Copyright © 2003-2005 Blazing Games Inc. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the file called
fdl.txt

Chapter 20

Board Games Summary

Contents

This is a simple summary of what was learned in this part of the book and some suggestions on
how you can applied what was learned here towards your own projects.

• Chapter 15 Board Game Overview - summarized
• Chapter 16 Pent Up Anger - summarized
• Chapter 17 Pent Up AI - summarized
• Chapter 18 Three dimensional Tic Tac Toe - summarized
• Chapter 19 Tic Tac AI - summarized
• Projects - some ideas for projects

http://www.BlazingGames.com

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 2

Chapter 15: Board Game Overview

Board Games
Board games can be broken into three styles of games: luck, skill, and both. Games that are
entirely based on luck require no decision making. An example of such a game are those track
based games where you roll a die and move your piece along a linear path, occasionally landing on
a square that gives you movement instructions. Skill based games give the player lots of options
but have no random element. Chess is the best example here. In between games have choices and
a bit of randomness. This type of game is still largely won by the more skilled player but a lesser
skilled player can occasionally win. A good example of this type of game is backgammon.

Why Computer Versions?
One question that a lot of people have is why even bother to create a computer version of a board
game when you can just play the game using the board? There are five main reasons that I would
do a computerized version of a board game: convenience, no lost pieces, fair referee, solo play,
and computer enhancements.

Pent Up Anger
The first game is a traditional track based board game, but with a bit of a twist. First, the players
each have five pieces, with the ability to move any piece in a given turn. Second, the game uses an
eight sided die. Third, the game is played on a five sided (Pentagram) board. The goal is to get all
of your pieces from their starting location to their ending location. However, if you land on an
opponent's piece, you send them to their starting location.

Three Dimensional Tic Tac Toe
The second game we develop in this part of the book is a three dimensional version of the classic
game Tic Tac Toe. The way you win this game is by forming a line consisting of four of your
pieces while preventing your opponent from doing the same. The board is made up of 4 layers.
Each of these layers is made up of 4 rows and four columns. You may place your piece on any of
the 64 locations available, but can not place a piece on an occupied location.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 3

Chapter 16 Pent Up Anger

A Detailed look at Pent Up Anger
Pent up Anger is an original board game that I designed which is loosely based on other board
games that I have seen. The game's board is pentagon shaped. Each player is assigned a different
color and has five playing pieces numbered one through five. Turns revolve clockwise around the
board. Players start their turn by rolling an eight sided dice. Before the player can move, they need
to get one of their pieces out of the starting gate. Players can only move or start once piece a
turn. If the player lands on an opponent's piece, that piece get's taken back to the starting gate.
Once the player's piece has landed in the loading zone, the piece is able to leave the board. Players
win the game once all their pieces have been removed from the board.

Building the Board
I draw a 24x24 box and duplicate it to get a row of 12 boxes. Rotating 5 times at 72 degrees each
rotation allows you to create the pentagon shape. Join and clean up the corners and you have the
board. The starting and ending zones are blocks of 5 squares and can easily be moved and rotated
to the appropriate positions. Add a bit of color and you have the board.

Building the Player
Every piece is going to have three states associated with it. There is also a number on each piece.
Even worse, there are 5 colors. 3x5x5 is 75, which is a lot of pieces to build so we are going to
have to cheat. Creating a grayscale version of the piece with the three states supported is easy
enough. A bit of code to control all of this and we have the player’s piece.

Finishing the Piece
To get the appropriate color, we use Flash’s tinting ability. To get numbers we use Flash’s
dynamic text ability. This is done in a new movie which makes use of the piece object created last
section. We have some functions that are used for manipulating this movie and for getting and
setting some of the movies information.

Building the Die
This game uses an eight sided die. Building the die movie is fairly simple. First we start with an
image of the die in a finished position. On a separate layer we have text for the eight different
values (labelled r1 to r8). We also have mid-roll die images. As with our other movies, we treat
the die movie as a class. To handle the rolling of the die we will need some functions for
initialising the die, starting the roll, animating the roll, and finishing the roll.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 4

Board Layout
Pieces need locations. We need to know the coordinates of these locations so we can place the
pieces on the proper screen locations. We could create a table by hand that contains all the
coordinates of the locations. This is time consuming and very prone to errors. For board games
that have complex layouts, this may be required. As our board is laid out in a fairly linear and
consistent fashion, we can algorithmically create the table.

Preparing the Pieces
At the end of initialization, the pieces used by the player exist in a two dimensional array named
pieces. None of the pieces have been assigned their color, number or properly placed on the
board. As we have all the starting information in the BOARD_LAYOUT array that we created, all
we have to do is grab the value from that table using the appropriate indexes and adjusting the
value of the piece to lay out’s coordinates, color, and number.

Turn Handling
At this point we are ready to get the game under way. The first thing we need is a way for the
player to roll the die. This can be combined with our solution for determining which players’ turn
it is by simply having a roll button for each player. The first task then is to create a roll button. As
we did with the pieces, instead of creating five buttons we only create one grayscale version and
tint it. We place these buttons on the board to correspond with the player’s turn and add a bit of
code to handle the roll.

Selecting the Piece
With the roll made, the next task is to allow the player to select the piece to move. This is done in
the board movie and is simply a matter of determining which pieces can be moved and setting
their mode to highlight and enabling mouse click on those pieces.

Moving the Piece
While it is quite possible to just move the piece to the destination, it is more fun if the piece
actually moves to the desired location. This means that we are going to have to write our own
motion routines to handle the animation. These routines should be familiar to those of you who
read the Bomb Nim chapters of this book.

Winning the Game
To see if the current player has won, we simply need to check to see if all the pieces are in their
end positions. A simple function in the board movie can handle this. Next we simply need to
create five win pages with a generic (so the color can be tinted) continue button that sends the
movie to the title screen. With the winning pages created, we need a way to reach these pages.
And now we have a playable version of the game.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 5

Chapter 17 Pent Up AI

AI in Board Games
AI stands for Artificial Intelligence. It is commonly used in computer games to describe a
computer controlled opponent. There are two basic techniques that are used when it comes to AI
for board games. They are Recursive Algorithms, and Decision Trees. Some more complicated
board games (such as war games) may require other techniques, but for most classic board games
these two techniques should work.

Planning Pent Up AI
For Pent Up Anger we are going to use a decision tree to handle the computer moves. This is
largely because of the random nature that the game has. As we don’t know what the player’s will
roll, all decisions on the move will have to be based on the current state of the board. First, we
assign a value to every piece and move the piece with the highest value. The weight value reflects
the priority, so the higher the step is on the list of questions, the higher the weight.

Tri-state buttons
At this point in time we have a complete and playable game. I would like it possible to play
against a computer player and also to leave some of the players out of the game. This means that
we are going to need some type of menu system that lets the player choose who controls a
particular color. As every color is going to have one of three choices, and only one of the three
choices is valid at a time, it makes sense to create a component that lets the player choose one of
three states. As there is no such component built into flash, this tri-state button then needs to be
created.

Title Menu
Now we can assemble the title screen. First, a simple logo. Next we put together the menu of
options and the “Start Game” button. The menu is made up of five of the tri-state buttons that we
created in the last section. Each of the tri-state buttons is tinted the appropriate color. To get the
title screen to actually do something, we are going to need to add some code. To prevent an
infinite loop from occurring, it also makes sure that there is at least one human or computer
player.

Adding skipping
One of the options in the tri-state menu’s is “No player”. This is to allow a small number of
players play against each other without having any computer opponents. After playing through the
game I noticed that it would be nice to be able to skip a turn. Especially in cases where your only
move is to move your piece onto a player’s launching area when that launching area is nearly full!
Having no opponent is the same as skipping a turn so it would only be a marginal amount of effort
to add a skip feature.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 6

Making a Computer Opponent
As computers can't think, we need to give the computer a set of rules for playing. To determine
the weight, we are going to make changes to the prepareMove function that is located in the
board symbol. Quite simply, we are assigning a weight to each move. The weight is assigned
using the rules we outlined earlier in the chapter. The actual routine that uses the weight is also
placed in the board symbol. It simply goes through the pieces and moves the piece with the
highest weight.

Fine Tuning the code
The first thing I am going to add to the game to give it more of a finished feel is a sound when the
dice is rolled. More sound for when a piece moves should now be added. This is a bit trickier as
the sound for handling this is going to have to be handled entirely with Action Script. The final
sound that we are going to add to the game is my over-used win sound which will be played when
one of the players wins. The game is now fairly good. One thing still bothers me, however. The
skip button is visible when the result of the dice hasn’t even been revealed as well as when the
player has started to move so we are going to have to hide it.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 7

Chapter 18 Three Dimensional Tic Tac Toe

Tic Tac Toe Overview
I originally wrote this game just after Flash 5 came out in order to see if the new Action Script
scripting language would meet my game design needs. The way you win this game is by forming a
line consisting of four of your pieces while preventing your opponent from doing the same. The
board is made up of 4 layers. Each of these layers is made up of 4 rows and four columns. You
may place your piece on any of the 64 locations available, but can not place a piece on an
occupied location. As with tic tac toe, 3D Tic Tac Toe is a turn based game. This means that the
first player makes a move, and only after he or she has made a move can the second player make a
move. By Tic Tac Toe tradition, the first player is assigned X and the second player is assigned O.
In single player mode, the computer always plays player 2.

Creating the Board
The first thing we want to do is work out an image for the board. Because this is a three
dimensional game, we want to give the board the appearance of depth. I also wanted to give it a
bit of hand-drawn feel. This image is placed into a movie clip called BoardLayer as the layers are
going to have extra functionality added to them. We then create four layers in the game scene of
the movie for the four plains of the board. If a fancier backdrop for the game is desired, you
could also have a fifth layer for the backdrop.

Tiles
Every location on a playfield is going to need it's own x or o to be placed there. More important,
the x or o must be able to be dimly visible as the player moves the mouse around and must be
highlighted when the game has been won! All of these conditions can be combined into a single
movie by having the following states: Empty, X_Highlight, O_Highlight, MakeX, X, WinningX,
MakeO, O, and WinningO. Once all the sequences have been built, we need a bit of code to
control the tile. We will need a function to turn on or off the highlight state. We also need to
know what symbol is in any given tile and we need to highlight the winning hand, so an ability to
set the tile to a win state is needed.

Adding Tiles to the Board
Now that we have tiles, we are going to need to add them to the board. We simply return to the
BoardLayer movie. For the 16 squares on the layer we add an instance of the tile. We need code
to actually handle the tiles. These consist of array initialization and passthrough functions for
getting and setting the various aspects of a tile.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 8

Taking Turns
The first thing we are going to need is a way to let the players know who’s turn it is. This can be
handled by having the player information written on the side of the screen. Two additional layers
are needed to hold number transition animations. Once the player has made a move, the from
number will be faded out and the to number, the number of the player to play next, will be faded
in.

Handling the Mouse
Mouse handling is handled by assigning our own functions to onMouseMove and onMouseUp.
We only do any mouse work when it is a player’s turn. We also create some support functions.
The clearTargets function quite simply resets the entire board. Instead of having to worry about
which board the player is interacting with, we are using a number between 1 and 64 to find the
particular tile that is being handled. To do this we have pass through functions that take the
desired number and convert it into the appropriate number calling the appropriate layer.
Passthrough functions for the setHighlight, showWins, findTile, setTileState, getTileState, and
setWinState are needed.

Winning Array
Determining a win is a fair bit of work. To simplify this task we will create a 64 element array.
Each element of the array, which corresponds to a particular tile, will contain an array of varying
size. This array contains a reference to an array that contains the four tiles that form the winning
move.

Checking for a Win
Now we have the master array, we can now quickly see if the game has been won. We write a
simple function to handle this. This simply finds the winArray entry for the tile and goes through
each of the winning combinations. If one of the lines contains all four tiles set to the player’s tile
then the game has been won!

Winning the Game
Now we want to create fancy winning sequences. First we will create the sequence for X winning.
The animation has the O in the middle as the winning X’s dance around it. The O winning
sequence is done the same way except that the x's and O's are switched.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 9

Chapter 19 Tic Tac AI

The AI Problem
One problem of handling AI in Flash is the Time limit Flash puts on scripts. For those of you who
have yet to run into this, when Flash executes a script and the script takes too long to execute,
Flash prompts you with a dialog box telling you the problem. Worse, if the user does stop the
script, that script never runs again. What would happen to your game if the AI was cancelled?
And the AI script never ran again? Not good! Alternatives? Span the AI over multiple frames.
Create an ai that executes itself in small chunks possibly embedded into a Please Wait movie. Or
possibly have an outside program handle the AI.

Planning the AI
When thinking about how to handle the computer’s intelligence for playing the Three Dimensional
Tic Tac Toe game, the first thought that came to my mind was to use a recursive algorithm. While
this technique would work, each level of recursion takes exponentially longer than the previous
level When you get right down to it, the AI is just looking at how many potential wins selecting a
particular tile will get it as well as how many potential wins it is blocking the opponent from
getting. We already have the win tables, so all that would have to be done is look at those tables
and see how many potential wins each location would result in and how many potential wins
would be blocked!

AI
With already existing win tables, the only additional thing that we need is a way of weighing the
value of the number of X’s or O’s in a potential winning line. Some simple arrays holding weight
values will do this trick. Next, we write the AI handling code. Due to the use of the tables, this
code runs really fast! Finally, we add code to make the computer use the AI routines!

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 10

Animated Title Sequence
We start the title sequence by creating a simple backdrop.The 3D tic tac toe message is tweened
scaling and motion animation. As we want fancy marbled buttons, we import a marble texture that
will be used for the buttons. Part of what I wanted when I originally created this game is for the
game buttons to appear once enough of the flash code to allow that part of the game has been
loaded. Doing this requires the use of a depreciated function. A better way of handling loading is
to use the movie clip methods _framesloaded and _totalframes methods. Flash MX 2004 even
adds more flexibility by providing a MovieClipLoader class.

About
We start our about scene out with the games credits. We then get to the pages of text. As we
need a way to go through these pages, I again used my marble image in order to create a set of
VCR like buttons that can be used for navigation.

Instructions
As we already have VCR buttons that we created for the about sequence, using them in the
instructions is a no-brainer. Now we simply assemble a series of pages describing the basic game
flow.

Blazing Games Guide to Flash Game Development Chapter 20: Board Games Summary

Page 20 - 11

Projects

With what you have learned in this section of the book, you should have no trouble creating your
own Flash based board games. What would I recommend for starting projects? I would take the
knowledge that I had just learned and apply it to an existing board game. I would start out by
trying to create a simple track based board game and then perhaps try my hand at a more complex
board game such as backgammon or checkers. Chess would also be a possible game to do, though
the AI for that game could prove to be a huge obstacle.

When creating new board games it is not a bad idea to create the game on paper first using
playing pieces from other board games. This way, you can get the game partially balanced before
doing any work. Likewise, if the game proves to be poor, you haven’t lost as much time as you
would have if you created the game only on the computer.

I would highly advise readers who are creating their own games to take a look at my Three
Dimensional Tic Tac Toe instruction section. The built in instructions for that game were very
well done and really help novice players understand how to play the game.

